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1 | INTRODUCTION Salenius et al., 1997; Salmelin & Hari, 1994), and proprio-

ceptive stimulation (i.e., passive movement; Alegre et al.,
The sensorimotor beta rhythm is mainly generated in the 2002; Illman et al., 2020; Parkkonen et al., 2015), as well
primary sensorimotor (SMI) cortex (Bardouille et al., 2019; as active movement (Cassim et al., 2000; Feige et al., 1996;
Cheyne et al., 2003; Gaetz & Cheyne, 2006; Jurkiewicz et al., Fry et al., 2016), action observation (Hari et al., 1998), or
2006), and it is known to be modulated by tactile (Cheyne imagining motor action (Hari et al., 1998; Pfurtscheller et al.,
et al., 2003; Gaetz & Cheyne, 2006; Illman et al., 2020; 2006; Schnitzler et al., 1997), and even by brief auditory or
Parkkonen et al., 2015), electrical (Houdayer et al., 2006; visual stimuli (Piitulainen et al., 2015). These stimuli and
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tasks, induce a rapid reduction (suppression or event-related
desynchronization, ERD) which is followed by a more de-
layed increase (rebound or event-related synchronization,
ERS) in the strength of rhythmic oscillations with respect to
the baseline level (Pfurtscheller, 2001). It has been suggested
that the suppression reflects cortical activation of the SMI
cortex related to sensory afference and/or, movement prepa-
ration or initiation (Neuper et al., 2006; Pfurtscheller, 2001;
Pfurtscheller & Lopes da Silva, 1999; Pfurtscheller et al.,
1996). The rebound is thought to be associated with reduced
excitability or active inhibition of the SMI cortex (Cassim
et al., 2001; Chen et al., 1998; Engel & Fries, 2010; Gaetz
et al., 2011; Pfurtscheller et al., 1996; Salmelin et al., 1995).

The beta rebound has been proposed to reflect the func-
tional state of the SMI cortex in various neurological diseases
such as stroke (Laaksonen et al., 2012; Parkkonen et al., 2017,
Tang et al., 2020), schizophrenia (Brookes et al., 2015; Liddle
et al., 2016), Parkinson's disease (Degardin et al., 2009; Hall
et al., 2014; Vinding et al., 2019), and cerebral palsy (Demas
et al., 2019; Pihko et al., 2014). However, patients are prone
to changes in their alertness during MEG/EEG recordings,
which may alter the oscillatory activity, and thus potentially
affect the estimated cortical level of excitability. Alertness
may easily decrease during MEG/EEG recordings in healthy
individuals, and even more so in patients, for example, in
acute stroke patients and patients suffering from cognitive
disorders. In this study, we simulated clinical MEG and EEG
measurement protocols to quantify the effect of alertness and
active attention to the stimuli on the level of SMI beta rhythm
modulation in healthy subjects. This new information is im-
portant for all future clinical and basic research studies that
attempt to utilize the beta rhythm modulation to assess the
SMI cortex function.

2 | METHODS

2.1 | Subjects

Twenty-three healthy subjects (12 females, age 19—35,
mean 23 + 4 yrs) participated in the experiment. All subjects
were right-handed according to the Edinburgh Handedness
Inventory (Oldfield, 1971).

The study was approved by the local ethics committee
of Aalto University in accordance with the Declaration of
Helsinki. Prior to the study, all participants signed written
informed consent.

2.2 | Stimuli and experimental design

Cerebral signals were recorded during three conditions to
examine how the level of vigilance affects SMI cortex beta

FIGURE 1 Tactile stimulus setup for beta thythm modulation

rhythm modulation. The conditions were selected from a
practical point of view, as some patients may not be able to
follow instructions during the MEG or EEG recordings. In
the neutral condition, participants were fixating on a pic-
ture in front of them (size 12 X 15 cm, a distance of 2.2 m).
The participants were instructed not to pay attention to the
stimuli, and to think whatever comes into their mind. In the
attention condition, the participants were fixating at the same
picture as in the neutral condition, counting quietly in their
mind the total number of the received tactile stimuli. The
number of received stimuli was asked immediately after the
attention task to ensure the subjects’ focus on the stimuli.
During the snooze condition, the participants kept their eyes
closed, without paying attention to the stimuli, and were al-
lowed to fall asleep. The duration of all conditions was about
nine to ten minutes and the conditions were measured in ran-
domized order.

Modulation of beta rhythm was induced by tactile stimuli
that were delivered alternately to both index fingertips with
an interstimulus interval (ISI) of 6 s for a given finger (3 s
between right and left side stimulation). The stimuli were
mechanically induced by pneumatic diaphragms driven by
compressed air. The duration of the stimulus was 180 ms,
peaking at 40 ms. During the stimulation periods, the par-
ticipants held their hands relaxed on a pillow (Figure 1).
Earplugs were used throughout the measurements to prevent
possible stimulus-induced noise artifacts.

2.3 | Data acquisition

The simultaneous MEG and EEG measurements were car-
ried out in a magnetically shielded room (Imedco AG,
Hiégendorf, Switzerland), with a 306-channel (204 pla-
nar gradiometers, 102 magnetometers) whole-head MEG
system (Vectorview, Elekta Oy, Helsinki, Finland) at the
MEG Core, Aalto Neurolmaging, Aalto University. Scalp
EEG was recorded simultaneously with a MEG-compatible
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60-channel EEG-cap (ANT Neuro waveguard™original),
where the Ag-AgCl surface electrodes were placed accord-
ing to the international 10-20 system. During the measure-
ments, the participants were seated comfortably with their
heads in the helmet-shaped MEG sensor array. Prior to the
measurement, five indicator coils were attached to the EEG-
cap (three to the forehead and two above the ears) to define
the subject's head position with respect to the MEG sensors.
The location of the indicator coils, anatomical landmarks
(left and right preauricular points and nasion), and 100-200
additional points from the scalp surface, were determined
with a 3-D digitizer (Fastrak 3SF0002, Polhemus Navigator
Sciences, Colchester, VT, USA). At the beginning of each
measurement session, the head position inside the MEG
helmet was measured with respect to the sensor array, and
continuous head position tracking was monitored through-
out the whole measurement. Eye movements were recorded
with two vertical electrooculogram electrodes (EOG).

All data were recorded at a sampling frequency of
1000 Hz, and the MEG and EEG signals were band-pass fil-
tered to 0.1-330 Hz. The impedance of the EEG electrodes
was verified to be below 5 kQ prior to the recordings.

2.4 | MEG and EEG signal processing

2.4.1 | Preprocessing

To improve the comparability of the different measurement
conditions, MEG raw signals were transformed to the same
average head-coordinate system within each subject. The
data was preprocessed off-line using the temporal signal-
space-separation method (tSSS) with head movement com-
pensation (Taulu & Kajola, 2005; Taulu & Simola, 2006)
implemented in the MaxFilter software (v2.2; Elekta Oy,
Helsinki, Finland).

Further analyses of MEG and EEG data were done using
MNE python 0.17 (Gramfort et al., 2013). The original EEG
data (unipolar referential AFz) was re-referenced with a
common average reference overall electrodes (excluding bad
channels). The average reference was chosen because our pre-
vious study indicated that this approach produced the highest
signal-to-noise ratio and thus the strongest beta rhythm mod-
ulation (Illman et al., 2020). Artifacts related to eye blinks
(two magnetometer and two gradiometer components) were
removed with principal component analysis (PCA; Uusitalo
& Ilmoniemi, 1997).

2.4.2 | Spectral analysis

Power spectral density (PSD) was calculated to observe
changes in rhythmic brain oscillations at theta (4-7 Hz),
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alpha (8—12 Hz), and beta (13-25 Hz) frequencies during the
different conditions. However, these PSDs do not represent
spontaneous rhythmic brain oscillations, as they are affected
by tactile stimulation. PSDs were computed for the neutral,
attention, and snooze conditions by using the Welch method,
with a sliding 2048-point fast Fourier transform (FFT) with a
non-overlapping Hanning window. The peak power of theta,
alpha, and beta frequencies was determined from the PSDs
over the right and left SMI cortex and occipital area.

2.4.3 | Betarhythm modulation

Time-frequency representations (TFRs) were calculated to
visualize changes in rhythmic activity in the three differ-
ent conditions. TFRs for each subject were computed using
a Morlet wavelet transformation in the frequency range of
2-40 Hz for a time window from —700 to 3200 ms with re-
spect to stimulus onset (Tallon-Baudry et al., 1997). Using
wavelets, spectral and temporal resolution at different fre-
quencies can be balanced by scaling the number of cycles
by frequency. For this purpose, we set the number of cycles
to f/2.

The strength of SMI cortex beta rhythm modulation
was determined by computing the temporal spectral evolu-
tion (TSE) with respect to the onset of the tactile stimulus
(Engemann & Gramfort, 2015; Hari & Salmelin, 1997).
First, the pre-processed raw data was bandpass filtered to 13—
25 Hz. This 12-Hz wide frequency band was chosen as our
previous study (Illman et al., 2020) showed that individually
selected 10 Hz frequency bands between 13 and 25 Hz (13-
23 or 15-25 Hz) capture the strongest beta rhythm modu-
lation. However, comparing individually selected frequency
bands with common 13-25 Hz frequency band (capturing
both the lower ($1) and higher (f2) beta bands) resulted in
similar beta modulation curves. Therefore, we used in the
present study the 13—25 Hz beta band for all the subjects, as
standardized parameters particularly important in future clin-
ical use. After filtering, interfering somatosensory evoked
responses were subtracted from the raw data (David et al.,
2006). A Hilbert transform was applied to the data to obtain
the envelope signal, and the data were averaged with respect
to stimulus onset. TSE curves were calculated from —500 to
3000 ms with respect to stimulus onset. The peak latencies
and amplitudes of beta suppression and rebound were deter-
mined from the most representative MEG and EEG channels
over the left and right SMI cortices. One or two channels
with the strongest modulation were selected from both hemi-
spheres (two channels were selected if the strongest suppres-
sion and rebound were seen over the different channels).
Relative peak values (in %) of suppression (negative peak)
and rebound (positive peak) were calculated with respect to
the pre-stimulus baseline (=500 to —100 ms).



40f 15 |

ILLMAN ET AL.

——L Physiological Reports gz My
2.5 | Evaluation of alertness
2.5.1 | Questionnaire

The participants were asked to complete a questionnaire
right after the MEG-EEG measurement, to determine their
overall alertness throughout the study. In the questionnaire,
the participants evaluated their alertness subjectively dur-
ing the three different conditions on a seven-step Likert
scale; 0 = Fell asleep, 1 = Fully tired, 2 = Moderately tired,
3 = Slightly tired, 4 = Slightly alert, 5 = Moderately alert,
6 = Fully alert.

2.5.2 | Sleep stage scoring

As the main purpose of the study was to clarify the effect
of alertness on the modulation of the beta rhythm, the stage
of alertness during the snooze condition was explored fur-
ther. Sleep stages in the snooze condition were scored
according to the AASM manual (American Academy
of Sleep Medicine Manual for the Scoring of Sleep and
Associated Events; Berry et al., 2012). The sleep stage
was estimated from channels of the central, occipital and
frontal regions, throughout the snooze condition in 30 s
epochs. EOG channels were included in the sleep stage
evaluation. Only Stage W, Stage N1, and Stage N2 were
observed due to the short recording time. Stage W rep-
resents alert wakefulness to drowsiness (>50% of alpha
rhythm and visible eye blinks), Stage N1 indicates sleep
onset (vertex sharp waves, >50% of low voltage mixed
frequency (LVMF) and slow eye movements), and Stage
N2 light sleep (LVMF and K-complexes or sleep spin-
dles). Results are expressed in percentage with respect to
the total snooze condition.

2.6 | Statistical analysis

The non-parametric Wilcoxon test was used to test differ-
ences in subjects’ self-assessment of alertness between the
neutral, attention, and snooze conditions. Normal distri-
bution of relative peak values of beta suppression and re-
bound, and spectral peak amplitudes and frequencies, were
tested with the Shapiro-Wilk test (IBM SPSS Statistics
26), resulting in a non-normal distribution of the data.
Statistical differences of suppression and rebound between
the three different conditions were tested with the nonpara-
metric Wilcoxon signed-rank test. Spectral amplitudes of
alpha, beta, and theta amplitudes were strongly skewed, and
therefore the amplitudes were transformed logarithmically
before the t-test. In contrast, the nonparametric Wilcoxon
signed-rank test was used to test the frequencies, since the

logarithmic correction had a minor effect on the normality
of the data.

Correlation between the state of alertness (%) and the
change in beta suppression/rebound strength in the neutral
versus snooze conditions was tested with Spearman's cor-
relation coefficient. The percentage decrease in alertness in
the snooze condition was determined by summing the sleep
stages N1 and N2 (weighting N2 by two).

A p-value <0.05 was considered statistically significant in
all tests. Bonferroni correction was used to correct the effect
of multiple tests.

3 | RESULTS

The measurements were performed successfully for all sub-
jects and the quality of the obtained MEG and EEG data was
good, despite a few poorly functioning MEG (2 channels)
and EEG (1-3 channels) channels. In the attention condition,
the subjects were highly focused on the stimuli, and all of
them responded correctly to the number of stimuli at the end
of the attention task. Most subjects (21 out of 23) had pre-
vious experience in participating in a MEG study, hence it
was easy for them to relax in the snooze condition. For the
TSE analysis, 95 + 2 (mean + SEM) averaged events were
obtained in the neutral, 94 + 1 in the attention, and 95 + 1 in
the snooze condition.

3.1 | Level of alertness

Questionnaire. According to the questionnaire, the par-
ticipants felt clearly more tired (mean + SD) in the snooze
condition (1.6 + 0.4) compared with the neutral (3.7 + 0.3,
p < 0.01), and attention condition (3.8 + 0.4, p < 0.01); see
Figure 2a.

Sleep stage scores. Figure 2b presents the subjects’ sleep-
ing stages during the snooze condition. Due to the short mea-
surement session, only three different stages of sleep were
observed: Stage W, Stage N1, and Stage N2. On average, the
subjects were in the awake stage 70 + 7%, sleep stage N1
26 + 6%, and sleep stage N2 4 + 2% of the total time of the
snooze condition.

3.2 | Peak power of theta, alpha, and beta
frequencies during the different conditions

Figure 2c illustrates grand averaged (n = 23) power spec-
tra over left and right SMI and occipital areas in the three
conditions both in MEG and EEG. The peak power differed
between the conditions in the theta and alpha frequencies,
but not in the beta frequency band. The peak power over
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FIGURE 2 Assessment of participants’ alertness during the different conditions. (a) Participants’ subjective assessment of the alertness

in the Neutral, Attention and Snooze conditions based on a questionnaire (Likert scale: 0 = I fell asleep, 1 = Fully tired, 2 = Moderately tired,

3 = Slightly tired, 4 = Slightly Alert, 5 = Moderately alert, 6 = Fully alert). (b) Sleep stage scores (in %) during the snooze condition according

to the AASM manual (American Academy of Sleep Medicine Manual for Scoring of Sleep and Associated Events) based on the EEG recordings.

(c) Grand averaged (n = 23) power spectra over left (LH) and right (RH) sensorimotor and occipital (OCC) areas during the Neutral, Attention,

and Snooze conditions. The spectra have been calculated over the entire condition, including the changes of rhythmic activity caused by tactile

stimulation

the occipital area was significantly stronger in the snooze
vs. neutral conditions both in the alpha (MEG 1572 + 266
vs. 659 + 134 (fT/ecm)?, **p < 0.01; EEG 32.6 + 0.6 vs.
15.1 + 34 (uV)z, *p < 0.05), and theta frequency band
(MEG 238 + 24 vs. 121 + 16 (fT/cm)?, **¥p < 0.001, EEG
39 +0.6vs. 2.7 +0.6 (pV)z, **p < 0.01). The frequency
of the peak power within the theta, alpha, and beta bands
did not differ significantly between the conditions. Table 1
represents the peak power and frequency for each band and
condition.

3.3 | Modulation of the beta rhythm

The modulation of the beta rhythm followed a similar pat-
tern in all conditions both in MEG and EEG. An initial

suppression of the beta rhythm peaked at around 300 ms after
tactile stimulation, followed by a rebound at around 700-
800 ms (Figure 3b). Beta rhythm suppression and rebound to
tactile finger stimulation were observed bilaterally in sensors
over the SMI cortices both in MEG and EEG. Suppression
and rebound latencies did not differ significantly between
the conditions (Table 2). As expected, the responses were
clearly stronger in the contralateral hemisphere with respect
to the stimulated hand, and therefore, the following results
are provided only for the contralateral responses.

3.3.1 | Time-frequency representation

Figure 3a illustrates the grand average (n = 23) strength
and temporal behavior of the beta rhythm with respect to
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TABLE 1 Peak power and its frequency (mean +SEM) for theta (4—7 Hz), alpha (8—12 Hz), and beta (14-25 Hz) bands during neutral,
attention, and snooze conditions. The alpha frequency was determined for left and right sensorimotor (SMI) and occipital (OCC) areas, beta for left

and right SMI areas, and theta for OCC area

Theta
0CC Left SMI
MEG
Peak frequency (Hz)
Neutral condition 53+0.1 103+ 0.3
Attention condition 5.1+0.2 103 +0.3
Snooze condition 54+0.1 99+0.3
Power (fT, /cm)2
Neutral condition 121 £ 16 496 + 93
Attention condition 140 + 20 397 + 71
Snooze condition 238 +24 531 +71
EEG
Peak frequency (Hz)
Neutral condition 52+02 9.8 +0.3
Attention condition 52+02 10.0 £ 0.3
Snooze condition 5.1+02 10.0 + 0.3
Power (}JV)Z
Neutral condition 2.7 +0.6 6.0+1.3
Attention condition 29+0.6 6.5+138
Snooze condition 39+0.6 81+138

stimulus onset in all three different conditions. Both in
MEG and EEG, the temporal behavior of the beta sup-
pression and rebound was similar in all three conditions.
However, the strengths of suppression and rebound appear
slightly diminished in the snooze compared to the attention
and neutral conditions, especially in MEG. In the attention
condition, the rebound appeared somewhat prolonged com-
pared to the neutral and snooze conditions, especially in the
left hemisphere.

3.3.2 | Betarhythm modulation

Figure 3b illustrates the grand average (n = 23) TSE curves
over the contralateral SMI cortex with respect to the stimu-
lated hand during the neutral, attention, and snooze condi-
tions. Figure 3c shows that the contralateral relative peak
strengths of beta suppression and rebound did not differ sig-
nificantly between the conditions. In MEG, the rebound ap-
peared to be lower in the snooze condition compared to the
neutral condition (34 + 5 vs. 44 + 7 in the left and 50 + 7
vs. 59 + 8 right hemisphere), although the difference was
not significant. Table 2 shows the mean strengths of the beta
rhythm modulation.

Alpha Beta

Right Right
SMI ocCcC Left SMI SMI
9.9+03 10.2 +£ 0.1 185+ 0.6 18.0 £ 0.6
9.8+0.3 10.0 +0.2 185+ 0.7 18.1 £ 0.6
9.7+0.3 102 +0.2 179 + 0.6 173+ 0.5
393 + 60 659 + 134 148 + 31 138 + 35
368 + 66 828 + 197 130 + 30 119 +24
531+ 78 1572 + 266 141 + 30 128 + 20
9.8+0.3 10.1 £ 0.2 172 + 0.4 17.7 £ 0.5
O 2E (0)3) 9.9 +0.2 17.5 £ 0.5 16.8 + 0.5
9.6 +0.2 10.0 0.2 17.8 + 0.6 17.5 £ 0.6
6.1+14 15.1 +£3.4 1.0+0.2 1.1 +0.2
6.7+19 22.6 +£5.5 0.9 +0.2 1.1 +0.2
8.6 +1.8 32.6 £ 6.0 1.1 +£0.3 1.3+0.3

Figure 4 shows the individual relative peak strengths of
suppression and rebound for all subjects. The subjects were di-
vided into two groups "Alertness unchanged" and "Alertness
decreased", indicating a pronounced reduction of the sup-
pression and rebound in the snooze condition in the subjects
with decreased alertness (n = 8) compared to subjects whose
alertness did not change remarkably. However, the individ-
ual variation between different situations is worthy to note.
Furthermore, Figure 5 illustrates the correlations between the
level of alertness during the snooze condition and the change
in suppression and rebound strength between the neutral and
snooze conditions. Reduced alertness correlated significantly
with the reduction of suppression strength in the right hemi-
sphere in all subjects both in MEG r = 0.49, *p < 0.05 and
EEG right hemisphere r = 0.72, **p < 0.01, hence, the larger
the change in alertness the stronger the reduction in suppres-
sion strength. In contrast, no correlations between changes in
alertness and changes in rebound strengths were observed.

3.3.3 | Baseline beta power

Table 3 shows mean (= SEM) baseline beta power values
from =500 to —100 ms during the neutral, attention, and snooze
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FIGURE 3 Modulation of beta rhythm during the Neutral, Attention, and Snooze conditions. (a) Grand averaged (n = 23) TFR images, and
(b) TSE curves of the contralateral responses with respect to tactile stimulation in MEG and EEG. Zero point indicates the start of the stimulus.

(c) Relative peak amplitudes (%) of beta suppression and rebound to tactile stimulation in the Neutral, Attention, and Snooze condition. The figure
illustrates the responses of the contralateral hemisphere to the stimulated hand. 50% of the data points are inside the grey boxes and the white
horizontal lines inside the boxes indicate the median values of beta suppression and rebound. Outliers of the data are shown by crosses

conditions. The baseline beta power remains stable between dif-
ferent conditions, with exception of the left hemisphere in MEG,
which showed a significant difference between the neutral and
attention conditions (p = 0.02). Figure 6 illustrates all subjects’
individual baseline changes in different conditions. The sub-
jects are further divided into the "Alertness unchanged" and
"Alertness decreased" groups, showing that baseline changes
are larger in the "Alertness decreased" group in MEG.

As the baseline values showed some differences between
the conditions, the beta suppression and rebound strengths
were analyzed from absolute values (Table 2). In line with the
results obtained from the analysis of relative peak strengths,
the absolute suppression and rebound strengths did not show
significant differences between the conditions.

In summary, at the group level, the strength of suppres-
sion and rebound did not differ between the three conditions.
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TABLE 2 Betarhythm modulation strengths (relative to baseline) and latencies (mean +SEM) in three different conditions for contra (CH) and

ipsilateral (IH) hemispheres.

Right stimulation

Left stimulation

MEG CH EEG CH MEG IH
Rebound
Neutral
Relative amplitude (%) 4 +7 35+4 24 +4
Peak latency (ms) 740 + 33 759 £47 790 + 38
Absolute amplitude® 163 +4 0.89 + 0.1
Attention
Relative amplitude (%) 45 +7 33+6 23 +4
Peak latency (ms) 829 +48 761 +44 812 + 46
Absolute amplitude® 151+3 0.79 + 0.1
Snooze
Relative amplitude (%) 34+5 30+ 4 24 +4
Peak latency (ms) 773 + 41 711 +41 729 +33
Absolute amplitude® 10.7 +2 0.72 £ 0.1
Suppression
Neutral
Relative amplitude (%) 25+2 -20+2 25+2
Peak latency (ms) 298 + 15 32620 320+ 13
Absolute amplitude® -104+2 -0.58+0.1
Attention
Relative amplitude (%) 2242 -17+2 -23+2
Peak latency (ms) 269 + 20 266+ 19 314 +20
Absolute amplitude® -79+1 047 +0.1
Snooze
Relative amplitude (%) -20+2 —17+£2 21 +2
Peak latency (ms) 235 +17 270 +21 275+ 17
Absolute amplitude® -63+1 -043+0.1

*MEG, fT/cm; EEG, uV.

However, there was a weak correlation between reductions in
alertness and beta suppression strength.

4 | DISCUSSION

To our knowledge, this is the first study investigating the
effect of change in alertness on beta rhythm modulation.
At the group level, reduced alertness or active attention to
the received tactile somatosensory stimulus did not signifi-
cantly affect the SMI beta rhythm modulation. However, in
some subjects with a pronounced reduction in alertness, a
remarkable decrease of suppression and rebound strength
was observed. Moreover, reduced alertness correlated with
changes in suppression strength, indicating that at the indi-
vidual level changes in alertness may affect the strength of

MEG
EEG IH MEGIH EEGIH CH EEG CH
16+3 27 +4 23 +3 59+8 37«5
773 + 46 793 + 37 728 + 36 714 + 30 667 + 38
158+3 091 +0.1
16 £3 20+ 4 18+3 57+ 8 39+4
808 + 48 793 +47 737 +43 702 + 32 682 + 32
152+3 0.90 £ 0.1
19+3 22+3 22+3 50+7 35+4
729 + 38 801 + 44 700 + 28 703 + 32 656 + 26
134+2 0.86 + 0.1
-19+2 -19+2 -16 +2 -31+2 -18+2
327 + 21 343 +26 321 +17 293 + 20 288 + 19
-96+2 —0.51 +0.1
-17+1 20+2 -16 +£2 -29+2 -17+2
302 + 20 318 + 19 275 + 26 255 +22 272 + 19
-8.7+2 -0.46 + 0.1
-13+2 -15+2 -12+1 26 +2 -15+2
313 +24 300+£22 329+ 20 250 + 18 275 + 218
=75+ 1 -0.38 + 0.1

rhythmic modulation. This is an important topic especially
as the beta modulation has been proposed to serve as a bio-
marker of the functional state of the SMI cortex in several
neurological conditions, where the alertness may often be
reduced.

4.1 | Power spectra

Spontaneous rhythmic brain activity changes remarkably be-
tween stages of alertness and from a sleep stage to another.
Spontaneous alpha and beta rhythms are predominant dur-
ing wakefulness. When a person enters into a light sleep,
the alpha rhythm is reduced, while slower rhythmic activ-
ity (theta 4-7 Hz and delta 1-4 Hz) enhances (Broughton &
Hasan, 1995), predominantly in the frontal cortex (Marzano
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et al., 2013). Our observed increase in theta rhythm strength
in the snooze condition confirms that our results are reflect-
ing well the effect of reduced alertness on rhythmic brain
activity. In contrast, the increased alpha rhythm during the
snooze condition is most likely due to the well-known ef-
fect of eyes closure at the beginning of the snooze condition
before falling asleep. MEG measurements in a quiet envi-
ronment of the magnetically shielded room may cause the
experience of boredom, sustained attention, or even mental
fatigue, which can affect a variety of brain rhythms (Lal &
Craig, 2001; Langner & Eickhoff, 2013; Shigihara et al.,
2013; Tanaka et al., 2012, 2014). Low vigilance has been
described to reduce the power of spontaneous beta oscilla-
tions in the SMI cortex (Belyavin & Wright, 1987), but such
changes in the beta rhythm were not observed in the current
study. However, in the present study, the actual spontaneous
data were not recorded as the data was contaminated with the
tactile stimuli.

Natural inter-individual variation of beta rhythm peak fre-
quency and strength is expansive, and heritability regulated
(Salmelin & Hari, 1994; Smit et al., 2005). The circadian reg-
ulation has an effect on the spontaneous beta power, which has
been described to be weakest in the morning and increasing

Neutral Attention Snooze Neutral Attention Snooze

towards the afternoon (Cacot et al., 1995; Toth et al., 2007).
Such circadian changes have also been described to have an
effect on the modulation of the beta power, primarily on the
beta suppression (Wilson et al., 2014). To control for circa-
dian changes in rhythmic activity, in the present study, the
measurements were recorded between 11 am and 5 pm, a time
span, where the rhythm is supposed to be strongest.

4.2 | Effects of alertness on the
modulation of the SMI beta rhythm

At the group level, reduced alertness did not significantly affect
the strength of SMI beta rhythm modulation. Although reduc-
tions in suppression and rebound strengths were observed in
some subjects with markedly reduced alertness, changes in the
opposite directions were also observed, and thus the changes
were not consistent across the examined subjects. Inter-
individual variation in the level of alertness may have had an
effect on the large variability of the results. Furthermore, the
eyes closure in the snooze condition may have affected the re-
sults. However, an earlier study indicated that eye closure alone
does not alter the strength of beta rhythm modulation (Rimbert
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et al., 2018). The correlation analysis between changes in alert-
ness and changes in beta modulation indicated that decreased
alertness affected mainly the strength of beta suppression but
not rebound. This is an interesting finding as, in contrast, the
beta rebound has previously shown to be more sensitive to
changes in stimulus modality (such as tactile vs. electrical
stimulus or speed and range of movement Cassim et al., 2000;
Fry et al., 2016; Houdayer et al., 2006; Parkkonen et al., 2015;
Pfurtscheller et al., 1998; Salenius et al., 1997; Salmelin &
Hari, 1994) than the suppression. The suppression and rebound

are thought to arise from separate neuronal populations, and to
have distinct functional roles (Cassim et al., 2000; Chen et al.,
1998; Hall et al., 2011; Jurkiewicz et al., 2006; Salmelin et al.,
1995). The current study is in line with these earlier findings as
the suppression and rebound appeared to respond to changes in
alertness in distinct ways.

Based on the results, decreased alertness does not signifi-
cantly affect the strength of beta modulation, especially the
beta rebound, at the group level. These findings support the re-
liability of group-level findings of changes in beta suppression/
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rebound, that is, in different clinical conditions. Especially the
minimal effect of reduced alertness on the strength of beta re-
bound is important, as the beta rebound has been suggested
as a biomarker of the functional state of the SMI cortex after
stroke (Laaksonen et al., 2012; Parkkonen et al., 2017, 2018;
Tang et al., 2020). However, at the individual level, alterations
in alertness may affect beta rhythm modulation, especially beta
suppression, which should be taken into account in longitudi-
nal experiments to avoid misinterpretations.

In the present study, the level of alertness was assessed in
three different ways, which all confirmed a decrease in alert-
ness in the snooze condition. Although drowsiness of healthy
subjects is not equivalent to reduced alertness of an acutely ill
patient, the results clearly indicate that beta modulation is suit-
able as a biomarker also in acute patients. In our experience,
only some acute stroke patients had challenges in maintaining
alertness during measurement. Taken together, the possible ef-
fect of decreased alertness on beta modulation is not significant
at the group level. However, it is advisable to monitor changes in
the level of alertness during measurements and to encourage the
study subjects to be eyes open and keep their vigilance as good
as possible. Moreover, it is recommended that measurements
are taken at the time of day when subjects are most alert.

4.3 | Effects of active attention to the
stimulus on the modulation of the SMI rhythms

In general, attention to a sensory stimulus has been shown to
alter rhythmic brain activity. Visual alpha is most extensively

studied, and it has been shown to reduce brain regions pri-
marily engaged in visual tasks and enhance in regions that are
less involved (Van Diepen et al., 2019; Foxe & Snyder, 2011;
Klimesch, 2012; Palva & Palva, 2007). These spatial modu-
lations in alpha power are thought to reflect a general mecha-
nism of attentional gating in the cortical processing involved
and inhibition in various other brain regions. Much less is
known about the effects of attention on the beta rhythm of the
Rolandic sensorimotor cortex. Beta band power has shown
to be negatively correlated with the dorsal attention network
including the sensorimotor area (Sadaghiani et al., 2010).
Beta rhythm decreases during the attention task associated
with multisensory stimuli (Friese et al., 2016; Misselhorn
et al., 2019), and to increase in relation to faster reaction
time (i.e., increased alertness) to visual stimuli (Kaminski
et al., 2012), as well as during enhanced attention to tactile
stimuli (Bardouille et al., 2010). More focused attention to
a tactile stimulus either increased (Bardouille et al., 2010;
Dockstader et al., 2010) or decreased (Bauer et al., 2006) the
strength of beta suppression and rebound. The expectation
of an upcoming tactile stimulus has been shown to produce
the suppression prior to the stimulus (van Ede et al., 2010),
however, the attention-related beta suppression was not seen
prior to the stimulus onset in our study. These varying results
indicate that active attention affects the sensorimotor cortex
beta rhythm, but the large variety of stimuli and tasks used
in the studies may have different impacts on the beta rhythm.
The simple attention task used in the present study addition-
ally showed a prolonged beta rebound in the left hemisphere,
which may reflect that vigilance is more regulated in the left
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hemisphere, as has also been shown in a previous study (Kim
et al., 2017). However, the current study indicates that the
unwanted attention to the regularly repetitive tactile stimula-
tion has only inconsistent minor changes on the beta rhythm
modulation, and thus the unfavorable behavior of subjects
does not distort the results.

4.4 | Baseline beta power

In line with some earlier studies (Anderson & Ding, 2011;
van Ede et al., 2010, 2011; Jones et al., 2010), a slightly de-
creased pre-stimulus baseline was observed in the attention
condition compared to the other conditions, which may have
an effect on the relative suppression and rebound strengths.
However, the difference was significant only in the left hemi-
sphere. As any baseline differences between different con-
ditions may affect the results, the suppression and rebound
strengths were revised from the absolute strengths (as done,
e.g., in Muthukumaraswamy et al., 2013). The absolute mod-
ulation strengths did not differ between the conditions in line
with the results obtained from the relative values. Therefore,
the effect of the baseline power appeared to be negligible,
and the baseline normalized relative values are appropriate
also for clinical use.

5 | CONCLUSION

The present study simulated the measurement protocol of
acute stroke patients to study the effect of alertness and at-
tention to the stimulus on SMI beta modulation. Neither
reduced alertness nor active attention to the stimulus had
a significant effect on the strength of suppression or re-
bound of the beta rhythm at the group level. This impor-
tant observation shows that minor changes in alertness
do not significantly affect the results of beta modulation
studies. However, the effect of alertness on beta modula-
tion was individual and may be stronger in some subjects
and patients. Thus, individual results should be evaluated
with caution. It is also important to minimize the effects of
changes in alertness in longitudinal patient studies, where
the risk of changes in alertness can be substantial between
measurements.
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